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Fracture toughness and absorbed energy 
measurements in impact tests on brittle 
materials 

G. P. M A R S H A L L ,  J. G. W I L L I A M S ,  C. E. TURNER 
Department of Mechanical Engineering, Imperial College of Science and Technology, 
London, UK 

Previous work on impact testing has shown that the energy/unit area (w) normally measured 
in notched impact tests is dependent on specimen geometry. A fracture mechanical 
analysis has now been developed to account for the observed dependence of w on notch 
size. A correction factor (4) has been derived to accommodate notch effects and this 
allows for the calculation of the strain energy release-rate G directly from the measured 
fracture energies. 

Tests on PMMA have shown that "corrected" results are independent of specimen 
geometry and the Go for PMMA has been evaluated as 1.04 x 103 J m-'. The experimental 
results show that there is an additional energy term which must be accounted for and this 
has been interpreted here as being due to kinetic energy losses in the specimens. A 
conservation of momentum analysis has allowed a realistic correction term to be 
calculated to include kinetic energy effects and the normalized experimental results show 
complete consistency between all the geometries used in the test series. 

It is concluded that the analysis resolves many of the difficulties associated with notched 
impact testing and provides for the calculation of realistic fracture toughness parameters. 

1. I n t r o d u c t i o n  
In designing against the possibilities of premature 
fracture, one of the most important properties 
of a material is its ability to withstand impact. 
With many metals and most plastics, the 
susceptibility of the material to shock loading is 
often the most critical parameter considered in 
material selection. It therefore follows that it is 
essential to have a test/analysis combination 
which is able to give an accurate measure of 
impact fracture toughness so that different 
materials may be compared. At the present time 
the most favoured types of test are those involv- 
ing the use of pendulum impact machines where 
the differences in initial and final potential 
energies of the pendulum are easily measured. 
The two most common types of test (Izod and 
Charpy) involve the bending of notched speci- 
mens, the primary differences in test method 
being in the mode of specimen support and point 
of pendulum contact on the specimen. Un- 
fortunately, the "fracture energy" measured in 
both tests is not a material property since it 
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varies with the proportions and size of test 
specimen; even for a given impact velocity, and 
tests made on specimens of different geometries 
often rate materials in different orders of merit. 
As an alternative it is sometimes advocated that 
the specific fracture energy, w/A (where w is the 
energy lost by the pendulum and A is the cross 
sectional area of the fractured ligament) is a 
reliable measure of material toughness [1, 2]. 
However, this parameter is strongly dependent 
on notch length and must therefore be excluded 
as a candidate toughness parameter. 

The purpose of the present paper is to examine 
the nature of the geometrical and notch-length 
effects in the Charpy loading situation and to see 
whether some other simple correlation can be 
derived between w and the true fracture tough- 
ness. 

The analytical relations which are derived in 
the following sections have been tested using 
PMMA as a model material since plastics are 
relatively easy to test in impact because of the 
low load levels required for fracture and also 
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because there is a particularly serious impact 
problem in the practical applications of these 
materials. 

2. The relationship between fracture 
toughness and absorbed energy 

The strain energy, U, per unit thickness, 
absorbed in deflecting a cracked elastic test piece 
of thickness B is given by: 

U = P A / 2 B  (1) 
where P is load and A the deflection of the point 
of application of the load. 

If  a crack of length a is extended by an amount 
da, the strain energy release rate, G, per unit 
thickness is: 
G ~_ d U / d a  = [ P d A / d a  + ( A d P / d a ) ] / 2 a  . (2) 
Defining compliance, C, as: 

C = ~ / e  (3) 
and noting 

d C / d a  = (l/P) d A / d a  - ( A l P  2) d P / d a  (4) 
then at constant load, P, 

G = (P2dC/da) /2B  . (5) 
Related expressions can be obtained for release 
rate at constant deflection, A, or the rate 
expressed in terms of stiffness instead of com- 
pliance but this form is convenient here. 

From the well-known Griffith-Irwin develop- 
ment of linear elastic fracture mechanics (for 
example, [31): 

G = K ~ / E  ' (6) 
where E' is the reduced Young's modulus, E for 
plane stress, E l 1 -  v ~ for plane strain (v is 
Poisson's ratio) and K is the stress-field intensity 
factor, characterizing the singularity of stress 
around a sharp crack. 

At fracture, a critical value of energy release 
rate, Ge, or correspondingly Ke, is required, 
where Ge is the effective surface energy analogous 
to twice the surface energy in Griffith's original 
formulation, but including whatever dissipative 
plastic crack terms may arise local to the crack. 
Ko is commonly called the "fracture toughness" 
and designated Kle the "plane strain fracture 
toughness" if a flat opening mode fracture under 
plane strain conditions is in question. In plane 
shear or out of plane "cross slip", fractures can 
also occur. 

The fracture toughness is normally measured 
by observing the load, P, at which brittle fracture 
occurs in a suitable sharp-notch test piece, for 
example a three-point bend piece, for which 
the stress intensity factor K is known. In general: 
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K =  Ycr 4a  (7) 
where Y is a geometrical factor introduced to 
account for finite width effects. For the infinite 
plate with centre crack 2a and remote uniform 
stress cr considered by Griffith, Y = ~/~r. For the 
three-point bend piece of thickness B, width W, 
notch depth a, and span S = 4W: 

Y = 1.93 - 3 . 0 7 ( a / W )  + 14.53(a/W) 2 
- 2 5 . 1 1 ( a / W )  3 + 2 8 . 8 0 ( a / W ) ' .  (8) 

Similar expressions with slightly-altered coeffici- 
ents are given [4] for pure bending and three- 
point bend with S = 8 W. 

For three-point bend the nominal stress e is 
given by simple bending theory as: 

~r = 6 P S / 4 B W  2 . (9) 
Combining Equations 6 and 7 for the point of 
fracture gives: 

Ge = (dU/da) f  (10) 
= (YZa s a/E' ) f  (11) 

where the suffix f implies that the terms are 
evaluated at the instant of fracture. 

Conventional use of the simple expression 
(mentioned in the Introduction) namely Ge = 
w / A  (where A = B ( W  - a)) instead of Equation 
10 implies that the rate d/da at the onset of 
fracture equals the mean rate over the whole 
fracture path, i.e., that the crack movement "da"  
is in fact the whole ligament width (W - a) and 
also that: 

w / B  = U (12) 

(note that G and U are already on a unit thickness 
basis whereas w is not). 

In general neither of these steps is valid, and 
although on occasions the numerical result may 
not be too far removed from a constant value of 
Ge, in other cases it may be in error by a factor 
of 5 or so. 

The compliance, C, can be obtained by inte- 
grating Equation 5 if G is first expressed in terms 
of Y using Equations 6 and 7. Carrying this out 
for the three-point bend case using Equation 9 
gives: 

9S2 f 
C -  2 B W ~  E ,  g 2 a d a  + Co (13) 

where Co is the compliance for zero crack length. 
From a conventional theory, for three-point 
bending: 

Co = S 3 / 4 E B W  ~ . (14) 
Thus if the only energy absorbed in a test, w, 

were in fact the elastic strain energy, UB, then 
since from Equations 1 and 3: 
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U = P2C/2B (15) 

then by substituting for C from Equations 13 
and 14, and expressing P in terms of o f rom 
Equation 9 (and hence K from Equation 7) 
gives: 

w= GB[IY2ada + (SW/18)] /Y~a (16) 

= GBWr (17) 
where 

r  [ fY2xdx +(S/18W)] /Y2x (18) 

where x = a/W the non-dimensional crack 
length. 

The quantity r is shown as a function of a~ W 
in Fig. 1. 
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Figure 1 Correction factor (r versus non-dimensional 
crack length (a/w). 

Since w is the energy which should be measured 
by the loss of potential energy of the pendulum 
in a conventional impact test, and at fracture, 
G = Ge then: 

Ge = w/BWr = w/A'r (19) 

(where A' is the gross cross-section of the test 
piece, not just the ligament area A) instead of 
just Ge = w/A as in Equation 13. Clearly a plot 
of w against BWr should be linear and of slope 
Ge. 

To test the analysis, a programme was 
conceived using P M M A  as a "model"  material, 
the prime object of  the tests being the assessment 
of  the r correction factor for a range of tests 
using different initial notch lengths in various 
specimen geometries. 

3. I m p a c t  t e s t i n g  of P M M A  
3.1. Tes t  condi t ions  
The tests were all conducted on a conventional 
Charpy-type pendulum impact machine which 
gave an impact velocity of 2.5 msec -1 and was 
supplied with a range of pendulums weighing 
f rom 0.07 to 2.2 kg, to suit plastics of  various 
degrees of  toughness. Energy losses from windage 
and friction in this machine were automatically 
allowed for on the pendulum scale. The striking 
edge of each pendulum had a double nose, the 
edges being 10 m m  apart, so that the test speci- 
mens were all loaded in four-point bending. 
However, the central part  of the span here is so 
small that it is doubtful whether a pure bending- 
stress system is ever fully developed so that three 
point bending is probably a closer approxima- 
tion to the real situation. 

Since one of the primary variables which was 
to be tested was the effects of  specimen geometry, 
the tests were conducted on specimens machined 
from cast P M M A  (I.C.I. "Perspex") sheet to  
the following dimensions (W: B: S) : 

(i) 6.4 x 6.4 x 45 mm (iv) 9.5 x 3.2 x 45 mm 
(ii) 9.5 x 9.5 x 4 5 m m  (v) 9.5 • 1.6 x 4 5 m m  

(iii) 9.5 x 6.4 x 45 mm (vi) 3.2 x 9.5 x 45 mm. 
The theory developed in the preceding section 

is viable for the particular case of sharp-notched 
specimens and accordingly each specimen was 
sharply notched by the slow, controlled insertion 
of a razor blade, the initial crack propagating 
ahead of the blade as it was forced into the 
material. A large number of  specimens contain- 
ing various initial crack lengths (0.03 < a/W 
< 0.5) were tested with each specimen geometry 
so as to assess the influence of notch length on 
the results. It  was found that a crack length of 
0.25 mm was the minimum which could be 
inserted to give a square uniform front across 
the section and this value was adopted as a 
standard lower-limit value. 

All tests were conducted in an air-conditioned 
laboratory at 20 ~ C and 50 % relative humidity. 

3.2. Tes t  resul ts  
I t  was found that a number of test variables could 
affect the reproducibility of  the data in this type 
of test. The quality and consistency of the initial 
pre-notching and the alignment of the specimen 
in the machine were observed to be critical in 
producing reproducible data since any variation 
in either could produce fractures which were not 
square across the section (Fig. 2) and absorbed- 
energy values in these cases were consistently 
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since a least squares fit to the data showed that 
there was a positive intercept w' on the energy 
axis implying that there are other energy terms 
to be considered than just w and U. Nonetheless, 
it was pleasing to note that the slopes of the lines 
for the different specimen geometries were very 
consistent, thereby implying a constant value of 
Ge independent of  both notch length and 
specimen size. The numerical values of  the slopes 
and the w' energy intercepts for each geometry 
are summarized in Table I. 

Figure 2 Types of fracture in PMMA (a) "warped" 
fracture, (b) flat fracture. 

higher than for those tests where flat fractures 
occurred, and consequently the results of  such 
tests were ignored. 

As previously noted by many other workers, 
it was found that there was a strong dependence 
of the energy to fracture, w, on the size of the 
initial crack length. A typical graph of w~ 
ligament area (A) versus notch depth ratio a~ W 
is shown as Fig. 3. However, when the same 
results were plotted in the form w versus BD~ 
(Fig. 4), following Equation 15, the notch length 
dependency was seen to disappear and the results 
followed a predominantly linear pattern as 
expected. Contrary to expectation, however, the 
line did not pass through the origin of the graph 

TABLE I 

Specimen size Ge Intercept (w') 
(ram) (J m -2 x 10 -~) (J) 

9.5 • 9.5 x 45 1.05 0.046 
9.5 • 6.4 • 45 1.01 0.025 
9.5 • 3.2 • 45 1.03 0.009 
9.5 x 1.6 x 45 0.97 0.005 
6.4 x 6.4 x 45 1.03 0.014 
3.2 x 9.5 x 45 0.99 0.005 

4. Discussion of results 
From the results of  Fig. 4, it is clear that a linear 
relationship exists between w and BD~ (as 
predicted by Equation 15). The slopes of  the 
graphs listed in Table I give values which should 
be Ge and it is to be noted that  these numbers are 
consistent with data found elsewhere [5] so that 
the neglect of q~ is the major unwarrantable step 
of principle in attempting to use w/A for the 
fracture toughness. It  is seen however, that the 
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Figure 4 M e a s u r e d  e n e r g y  ( w )  v e r s u s  BD~. 

use of w/A'r from a single test will still not give 
a correct value of Ge because of the additional 
energy term which is included in the results. 

The source of this apparent discrepancy lies 
in the assumption of Equation 12 that w/B = U 
(for convenience in the following argument w is 
now taken on a unit thickness basis) since in an 
impact test of the nature described here there 
are numerous other energy "sinks" which require 
consideration. It  is assumed here that only 
brittle fractures are being discussed and that 
such fractures occur rapidly f rom an elastic 
loading condition apart  f rom plasticity very 
local to the crack tip. Clearly, if there is overall 
plasticity and a partly ductile fracture, plastic 
energy is absorbed in addition to the elastic 
strain energy, U. There are also possible friction 
losses between test piece and strikers or abut- 
ments, particularly if a ductile test piece is bent 
round the pendulum and forced through the 
abutments. A stable crack-growth for reasons 
of  crack blunting, bifurcation or even rapid 
increase of Ge with strain-rate could also absorb 
energy subsequent to the initial fracture instability 
and such cases are excluded f rom the present 
argument and are thought not to be relevant to 
impact tests using brittle materials such as 
PMMA. There are possible small losses from 
friction between striker and test piece even in a 
brittle fracture, but these are thought to be 

negligible here since no indentation of the 
abutments is visible and the test piece does not 
"wrap round" the pendulum. 

A complete study of the vibration of the 
specimen after impact and the corresponding 
interchange of potential, strain and kinetic 
energy is beyond the scope of this paper. This 
transient vibration has been studied [6] in 
relation to the force measured on an instru- 
mented pendulum [7, 8]. The energy interchanges 
were not there considered, although the cor- 
rection for inertia loading, [8],was found to be a 
function of a/W by means of the present 
compliance factor, r and the departure of  Ge 
f rom w/A was noted [6]. In addition to the 
above sources of energy loss, the most obvious 
and overriding additional term to be considered 
is the kinetic energy imparted to the test specimen 
during impact. All the kinetic energy transferred 
to the test piece first enters as strain energy, 
since momentum is given to the outer extremities 
by shear waves passing outward along the beam. 
It  is suggested, however, that it is incorrect to 
infer that all the kinetic energy is thus a "con- 
sequence" of  strain energy and should therefore 
be neglected. The time distribution of U and k 
must be considered, albeit quite approximately. 

At the instant of  fracture, some time t after 
the initial impact (perhaps a few milliseconds) 
some kinetic energy (k 0 will already exist, 
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having passed into the test piece via strain 
energy. Thus, whilst over the completed pro- 
cess, all the kinetic energy is in consequence of 
strain energy, the strain energy available to 
cause fi'acture at time t is: 

U - -  w -  ks �9 (20) 

This perhaps begs the issue of whether some at 
least of the kinetic energy in the test piece is not 
also available to cause fracture. A more detailed 
study would be required to resolve this poiEt. 
The Griffith concept is, however, essentially a 
static one and a quasi-static solution is being 
sought here. To employ Equation 20, an estimate 
of kt is required. It may be noted however that 
although this argument suggests that the 
magnitude of w is incorrect for use in dU/da, 
giving rise to the intercept on the graphs such as 
Fig. 4, the slope implied by Equation 19 will still 
give a good value of Ge if k~ is sensibly constant 
for the tests with various notch depths. 

From conventional mechanics calculations for 
impact of solid bodies, the ejection velocity of 
the test piece may well be much greater than the 
end velocity of the pendulum for the predomin- 
antly elastic behaviour associated with brittle 
fractures. Those calculations and some of the 
tests described below both show that the 
magnitude of k~ is by no means negligible, thus 
giving general support to the arguments advanced 
here. 

5. Assessment of kinetic energy loss (k 3 
Although the absolute magnitude of the kinetic- 
energy loss-term, k~, may be open to question, 
it is suggested that a good estimate may be made 
by measuring the kinetic energy loss in ejecting 
an unbroken specimen from the test machine, 
since kt is notionally assessed immediately 
following impact and before total fracture has 
occurred. 

The measured scale values of the energy loss 
on an unbroken specimen will, of  course, 
depend on the relative sizes of the specimen and 
pendulum and a simple correction must be 
made to account for these quantities. 

From classical mechanics, a mass M (the 
pendulum) striking with velocity V, a mass m 
(the test piece, notionally unsupported) at rest, 
will impart to it a velocity v where: 

v = V(m/m + M ) ( 1  + e) (21) 

(e is the coefficient of restitution). 
The kinetic energy of the test piece (k~) is then: 

k~ = V~(1 + e) 2 mM2/2(m + M )  ~ (22) 
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To confirm this relationship, tests were made 
on all the sizes of test pieces used in the main 
series, the specimens being ejected from the 
machine using the full range of pendulums. The 
measure of k~ was taken as the loss of potential 
energy recorded by the swing of the pendulums. 
In all the tests, the specimens were ejected 
between 0.7 and 1.5 m (depending on the 
specimen and pendulum size) in front of the 
machine, rising approximately 15 cm in the air 
in mid-path. A graph of k~ against mM2/  
(m + M) 2 gave one straight line, Fig. 5, whence 
using Equation 22 for the known initial velocity 
of 2.5 m sec - t  gives e = 0.776. The line for 
perfect collision, e = l, is also shown. 
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Figure 5 K i n e t i c  e n e r g y  o f  u n n o t c h e d  s p e c i m e n s  v e r s u s  
mm~/(m + M) ~. 

To check on the magnitude and validity of  
using the term k~ as a measure of kt, the original 
results for the fractured specimens were re- 
computed by using a modified version of 
Equation 19, namely 

Ge = w * / B W r  (23) 
where 
w* = w - �89 '2 

= w -  ~(1 + e )  2 . m  ~ - - M  V 2 . (24) 

A composite graph of  w* versus B D r  for all 
the results on the different specimen geometries 
is shown in Fig. 6. It can be seen that the 
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Figure 6 Corrected energy w* versus BDr : all specimens. 

correction term is of  the right order of magnitude 
in that  the best straight line, giving Ge, passes 
through the origin of  the graph. The slope of this 
line gives Ge = 1.04 x 10 a J m -z which is to be 
compared with the uncorrected results of  Table I, 
showing that the correction term has essentially 
left Ge unchanged. Further, the results on 
individual specimens can now possibly be used 
for an assessment of  Ge since thereis no additional 
energy term unaccounted for. 

It  is therefore concluded that, as a good guide, 
kinetic energy terms comparable to those for 
perfect impact are generated without recourse 
to the bending strain energy caused by the 
abutment reaction, so that k~ represents a 
reasonable estimate of k~. It  is to be noted that 
the present analysis discounts rotational energy 
terms and it may be that if these are included 
then the scatter shown in Fig. 6 may be con- 
siderably reduced. 

The practical objective of  obtaining Ge from 
a single measurement of  energy would therefore 
appear to be feasible providing the calibration 
term r and the kinetic energy losses are accounted 
for. It  is suggested that if several tests are to be 
carried out to allow for scatter on results, it is 
better to conduct these tests using specimens 
with various notch depths rather than simply 
repeating tests for one particular notch depth. 
Then, if brittle fractures occur, plots such as 
Figs. 4 and 6 would enable the determination of 
Ge. For  plastics, it may well be found that Ge 

values will vary depending on the effective strain- 
rate applied to the specimen since the value of 
Ge = 1.04 x 103 J m -2 for P M M A  is indicative 
of  art initial crack speed of 300 m sec -1, which 
in tensile tests would be expected to occur for 
cross-head rates -'- 500 m min -1. 

6. Conclusions 
The used energy per unit area, w/A, is not 
justified as a measured toughness since this term 
is geometry dependent. The geometry depen- 
dence, r can be evaluated (Fig. 1 here) so that 
an expression Ge = w/BWr is obtained. An 
additional factor entering into impact tests is 
that some energy, k~, is converted into kinetic 
energy before fracture occurs so that a term 
(w - kt) is required, k~ being assessed by simple 
tests on unnotched specimens. I f  tests on pieces 
of  various notch depths are made, Ge cart then 
be obtained directly from the slope of a graph 
of (w - k~) against BWr These remarks apply 
in principle only to classic brittle fractures since 
any significant ductility or other form of energy 
absorption such as crack blunting subsequent 
to the initial fracture will increase the energy 
absorbed over and above the value of w relevant 
to the elastic analysis. Values of toughness 
obtained by this method are directly comparable 
to values of K obtained directly f rom the fracture 
load. 

Whilst this work was being completed, the 
authors learned of very similar work being 
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